Applied Metagenomics I

Till Helge Helwig

Eberhard-Karls-University Tübingen Wilhelm-Schickard-Institute Algorithms in Bioinformatics Group

Seminar "Metagenomics"

December 8th, 2009

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Introduction

What we know already:

- What is metagenomics?
- Sequencing techniques
- Metagenome analysis with MEGAN

Complete Neanderthal Mitochondrial Genome 0000000 Human Microbiome Project Summary

Introduction

What we know already:

- What is metagenomics?
- Sequencing techniques
- Metagenome analysis with MEGAN

What I am going to explain:

- What is metagenomics used for?
- Who uses metagenomics?

Overview

- Applications overview
 - Bioprospecting
 - Phylogenetic Analysis
 - Functional Analysis
- 2 Complete Neanderthal Mitochondrial Genome
 - Introduction
 - Preparations & Procedures
- Human Microbiome Project
 - Introduction
 - Methods & Project Status

Overview

- Applications overview
 - Bioprospecting
 - Phylogenetic Analysis
 - Functional Analysis
- 2 Complete Neanderthal Mitochondrial Genome
 - Introduction
 - Preparations & Procedures
- 3 Human Microbiome Project
 - Introduction
 - Methods & Project Status

Applications overview •0000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Bioprospecting			
Basic Idea			

- New biomolecules are required by different research fields, e.g.:
 - New agents are needed for drug design
 - Biocatalysts allow new experimental protocols

Applications overview ●0000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Bioprospecting			
Basic Idea			

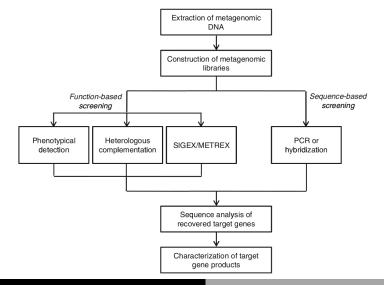
- New biomolecules are required by different research fields, e.g.:
 - New agents are needed for drug design
 - Biocatalysts allow new experimental protocols
- Conservative search is slow and has many manual steps, e.g.:
 - Growing cultures of selected microorganisms
 - Selection of new strains

Applications overview •0000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Bioprospecting			
Basic Idea			

- New biomolecules are required by different research fields, e.g.:
 - New agents are needed for drug design
 - Biocatalysts allow new experimental protocols

• Conservative search is slow and has many manual steps, e.g.:

- Growing cultures of selected microorganisms
- Selection of new strains
- ⇒ Instead of exploring single organisms let's look at whole communities


Applications overview ●0000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Bioprospecting			
Basic Idea			

- New biomolecules are required by different research fields, e.g.:
 - New agents are needed for drug design
 - Biocatalysts allow new experimental protocols

• Conservative search is slow and has many manual steps, e.g.:

- Growing cultures of selected microorganisms
- Selection of new strains
- ⇒ Instead of exploring single organisms let's look at whole communities
- \Rightarrow Increased chances to be successful

[Simon and Daniel, 2009] Source:

Applications overview 00●00000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Bioprospecting			
Sequence-Ba	ased Screening		

• Uses polymerase chain reaction (PCR) or hybridization

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Bioprospecting

Sequence-Based Screening

- Uses polymerase chain reaction (PCR) or hybridization
- Requires primers obtained from known genes
- Identified genes have similarity with the reference genes
- Other genes are not found

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Bioprospecting

Sequence-Based Screening

- Uses polymerase chain reaction (PCR) or hybridization
- Requires primers obtained from known genes
- Identified genes have similarity with the reference genes
- Other genes are not found
- No dependency on foreign host organisms

Applied Metagenomics |

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Bioprospecting

Sequence-Based Screening

- Uses polymerase chain reaction (PCR) or hybridization
- Requires primers obtained from known genes
- Identified genes have similarity with the reference genes
- Other genes are not found
- No dependency on foreign host organisms
- Examples:
 - "Subtractive hybridization magnetic bead capture"
 - "Metagenomic walking"
 - Microarrays

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summar

Bioprospecting

Function-Based Screening

- Does not rely on available knowledge
- Can find completely new biomolecules
- Identifies only complete genes and not fragments

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Bioprospecting

Function-Based Screening

- Does not rely on available knowledge
- Can find completely new biomolecules
- Identifies only complete genes and not fragments
- Requires foreign organisms for expression of target genes and production of their proteins

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Bioprospecting

Function-Based Screening

- Does not rely on available knowledge
- Can find completely new biomolecules
- Identifies only complete genes and not fragments
- Requires foreign organisms for expression of target genes and production of their proteins
- False-negative results possible due to host's inability to adapt

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summar

Bioprospecting

Function-Based Screening Methods

Direct Detection

Phenotype identification by indicators within the growth medium.

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Bioprospecting

Function-Based Screening Methods

Direct Detection

Phenotype identification by indicators within the growth medium.

Heterologous Complementation

Specific and highly selective medium requires target genes to complement the organism's genes or host will not survive.

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Bioprospecting

Function-Based Screening Methods

Direct Detection

Phenotype identification by indicators within the growth medium.

Heterologous Complementation

Specific and highly selective medium requires target genes to complement the organism's genes or host will not survive.

Induced Gene Expression

Green fluorescent protein is inserted together with the target gene via operon-trap expression vector. Relevant host cells are thus **visibly marked**.

Applications overview	Complete Neanderthal Mitochondrial Genome	Human Microbiome Project	Summary
00000000	00000000	0000000	
Bioprospecting			

Screenings Summary

	Function-based	Sequence-based
Advantages	• Only complete genes are found	• No need for a foreign host to obtain gene expression data
Disadvantages	 Relies on a foreign host, which might induce false negative results 	 Cannot find entirely unknown genes Might yield incomplete genes

Applications overview ○○○○○●○	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Phylogenetic Analysis			
Who is out t	here?		

- Explore the phylogenetic diversity within a sample
- Is also called "taxonomical binning"

Applications overview ○○○○○●○	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Phylogenetic Analysis			
Who is out t	here?		

- Explore the phylogenetic diversity within a sample
- Is also called "taxonomical binning"
- Different approaches:
 - Search for known markers (e.g. RecA)
 - Match reads against database and place them within a taxonomy (\Rightarrow MEGAN)
 - Measure oligonucleotide or restriction-site frequencies
 - Compare and classify 16S rRNA with the help of reference databases

Applications overview ○○○○○●○	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Phylogenetic Analysis			
Who is out t	here?		

- Explore the phylogenetic diversity within a sample
- Is also called "taxonomical binning"
- Different approaches:
 - Search for known markers (e.g. RecA)
 - Match reads against database and place them within a taxonomy (\Rightarrow MEGAN)
 - Measure oligonucleotide or restriction-site frequencies
 - Compare and classify 16S rRNA with the help of reference databases
- High potential for inexact results (e.g. due to PCR bias)

Applications overview ○○○○○●○	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Phylogenetic Analysis			
Who is out t	chere?		

- Explore the phylogenetic diversity within a sample
- Is also called "taxonomical binning"
- Different approaches:
 - Search for known markers (e.g. RecA)
 - Match reads against database and place them within a ${\rm taxonomy}~(\Rightarrow {\sf MEGAN})$
 - Measure oligonucleotide or restriction-site frequencies
 - Compare and classify 16S rRNA with the help of reference databases
- High potential for inexact results (e.g. due to PCR bias)
- \Rightarrow **Shotgun sequencing** to avoid PCR

Applications overview ○○○○○○●	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Functional Analysis			
What are the	ey doing?		

• Look at functions and interactions between microorganisms

Applications overview ○○○○○○●	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Functional Analysis			
What are th	ey doing?		

- Look at functions and interactions between microorganisms
- Functional databases like SEED, Pfam and the STRING project provide reference data
- Associate sequences with these predefined clusters
- Also called "functional binning"

12 / 34

Applications overview ○○○○○○●	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Functional Analysis			
What are th	ey doing?		

- Look at functions and interactions between microorganisms
- Functional databases like SEED, Pfam and the STRING project provide reference data
- Associate sequences with these predefined clusters
- Also called "functional binning"
- Different organisms can fulfill the same purpose
- The same organism can perform different tasks depending on the circumstances

Applications overview ○○○○○○●	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 0000000	Summary
Functional Analysis			
What are th	ey doing?		

- Look at functions and interactions between microorganisms
- Functional databases like SEED, Pfam and the STRING project provide reference data
- Associate sequences with these predefined clusters
- Also called "functional binning"
- Different organisms can fulfill the same purpose
- The same organism can perform different tasks depending on the circumstances
- Tools like MG-RAST are available already

Overview

- 1 Applications overview
 - Bioprospecting
 - Phylogenetic Analysis
 - Functional Analysis
- 2 Complete Neanderthal Mitochondrial Genome
 - Introduction
 - Preparations & Procedures
- 🗿 Human Microbiome Project
 - Introduction
 - Methods & Project Status

Human Microbiome Project Summa

Introduction

About the Project

- Team of 25 researchers...
- ...from institutes in the USA and Europe
- 38,000 years old Neandertal bone found in Vindjia Cave (Croatia)

Source: Wikipedia

Human Microbiome Project Summary

Introduction

About the Project

- Team of 25 researchers...
- ...from institutes in the USA and Europe
- 38,000 years old Neandertal bone found in Vindjia Cave (Croatia)
- Goal: Finding new information about the relationship between modern humans and Neandertals

Source: Wikipedia

Complete Neanderthal Mitochondrial Genome ○●○○○○○○ Human Microbiome Project Summary

ZBT

Preparations & Procedures

Extraction and Preparation of the Sample

• Samples taken from a bone seem to be a **reliable source** for DNA

Complete Neanderthal Mitochondrial Genome ○●○○○○○○ Human Microbiome Project Summary

Preparations & Procedures

Extraction and Preparation of the Sample

- Samples taken from a bone seem to be a reliable source for DNA
- **Contamination** with foreign DNA is possible due to previous washing procedures

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Preparations & Procedures

Extraction and Preparation of the Sample

- Samples taken from a bone seem to be a reliable source for DNA
- **Contamination** with foreign DNA is possible due to previous washing procedures
- Specific primers for human and Neandertal genes were searched
- PCR using these primers allowed for **quantification** of the contained DNAs

Complete Neanderthal Mitochondrial Genome

Human Microbiome Project Summary

Preparations & Procedures

Extraction and Preparation of the Sample

- Samples taken from a bone seem to be a **reliable source** for DNA
- **Contamination** with foreign DNA is possible due to previous washing procedures
- Specific primers for human and Neandertal genes were searched
- PCR using these primers allowed for **quantification** of the contained DNAs
- Contamination with unwanted modern human DNA was below 1%

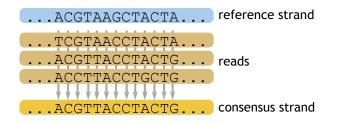
Applications overview	Complete Neanderthal Mitochondrial Genome ○0●00000	Human Microbiome Project 0000000	Summary
Preparations & Procedures			
Considerations			

- Ancient DNA is subject to degradation processes
- E.g. deamination of cytosine results in uracil residues, which are read as thymine by the DNA polymerase

Applications overview	Complete Neanderthal Mitochondrial Genome ○0●00000	Human Microbiome Project 0000000	Summary
Preparations & Procedures			
Considerations			

- Ancient DNA is subject to degradation processes
- E.g. deamination of cytosine results in uracil residues, which are read as thymine by the DNA polymerase

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome ○0●00000	Human Microbiome Project 0000000	Summary
Preparations & Procedu	res		
Consideratio	ns		


- Ancient DNA is subject to degradation processes
- E.g. deamination of cytosine results in uracil residues, which are read as thymine by the DNA polymerase
- Previous studies allowed thorough understanding of these disturbances

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome ○0●00000	Human Microbiome Project 0000000	Summary
Preparations & Procedu	res		
Consideratio	ns		

- Ancient DNA is subject to degradation processes
- E.g. deamination of cytosine results in uracil residues, which are read as thymine by the DNA polymerase
- Previous studies allowed thorough understanding of these disturbances
- To compensate for these expected problems mitochondrial DNA was chosen over nuclear DNA
- Each cell contains it in huge abundance and the shorter length works well with 454 sequencing

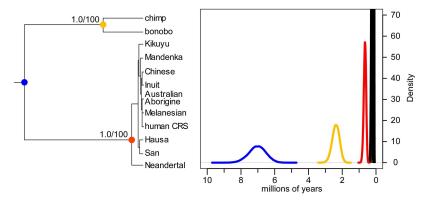
Applications overview 00000000	Complete Neanderthal Mitochondrial Genome ○00●0000	Human Microbiome Project 0000000	Summary
Preparations & Procedures			
Assembly Process			

- Nucleotide misincorporation is a problem
- Mitochondrial sequence from modern humans used as reference strand

- Sequencing reads aligned with the reference
- Majority base identified for each column

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome ○000●000	Human Microbiome Project 0000000	Summary
Preparations & Procedures			
Assembly Process (2)			

- Some regions were **problematic** due to e.g. missing coverage
- These were extracted specifically from another bone sample and Sanger sequenced


- Some regions were **problematic** due to e.g. missing coverage
- These were extracted specifically from another bone sample and Sanger sequenced
- After **repairing** the consensus strand using those results the **new** consensus strand was used as reference strand
- 721 sequences additional sequences were found, which the first step did not reveal

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome ○0000●00	Human Microbiome Project 0000000	Summary
Preparations & Procedu	res		
Results			

- A total of 8341 sequences could be identified
- This leads to a **34.9-fold coverage** of the whole mitochondrial genome
- Verification steps showed a contamination with modern human mtDNA of 0.5%
- Trusting this to be fairly reliable the mtDNA was analyzed and compared with other data

• Thus a phylogenetic tree could be estimated

Source: [Green et al., 2008]

451

- The Neandertal mitochondrial genome is definitely **no mere** variation of the modern human's version
- About 660,000 years ago both lineages diverged
- Their most recent common ancestor lived quite some time **before** the most recent common ancestor of all humans
- The results also suggest that the Neandertal **population size** was significantly **smaller** than the modern ones

Overview

- 1 Applications overview
 - Bioprospecting
 - Phylogenetic Analysis
 - Functional Analysis
- 2 Complete Neanderthal Mitochondrial Genome
 - Introduction
 - Preparations & Procedures
- Human Microbiome Project
 - Introduction
 - Methods & Project Status

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 0000000	Human Microbiome Project ●000000	Summary
Introduction			
About the Project			

• Whole human genome published in 2003

ZBH

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ●000000	Summary
Introduction			
About the Project			

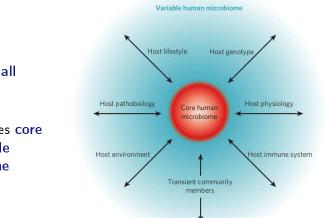
- Whole human genome published in 2003
- This is not the only genetic information associated with humans

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ●000000	Summary
Introduction			
About the P	Project		

- Whole human genome published in 2003
- This is **not** the only **genetic information** associated with humans
- Constant symbiosis with a vast number of microorganisms (microbiota)
- They perform tasks we therefore **never** had to do ourselves

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ●000000	Summary
Introduction			
	· · · · ·		

About the Project


- Whole human genome published in 2003
- This is **not** the only **genetic information** associated with humans
- Constant symbiosis with a vast number of microorganisms (microbiota)
- They perform tasks we therefore **never** had to do ourselves
- Goal: Characterize the distribution and evolution of microbiota

Applications	overview

Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Introduction

Microbiome

Entirety of all microbiota genomes

 HMP defines core and variable microbiome

Source: [Turnbaugh et al., 2007]

Applications overview	Complete Neanderthal Mitochondrial Genome 0000000	Human Microbiome Project 00●0000	Summary
Introduction			
Questions			

- Is there a core microbiome?
- Do all humans have the same core microbiome?

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 00●0000	Summary
Introduction			
Questions			

- Is there a core microbiome?
- Do all humans have the same core microbiome?
- Which factors influence the variable microbiome?
- How stable is the microbiome?

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 00●0000	Summary
Introduction			
Questions			

- Is there a core microbiome?
- Do all humans have the same core microbiome?
- Which factors influence the variable microbiome?
- How stable is the microbiome?
- Is manipulation of the microorganisms possible to increase their performance?

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project 00●0000	Summary
Introduction			
Questions			

- Is there a core microbiome?
- Do all humans have the same core microbiome?
- Which factors influence the variable microbiome?
- How stable is the microbiome?
- Is manipulation of the microorganisms possible to increase their performance?
- How do the microbiota relate to certain diseases?

Applications overview 00000000	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ०००●०००	Summary
Methods & Project Status			
Reference D	atabase		

- Metagenomic methods will be applied to samples taken from human individuals
- These rely on reference data

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ○○○●○○○	Summary
Methods & Project Stat	us		
Reference Da	atabase		

- Metagenomic methods will be applied to samples taken from human individuals
- These rely on reference data
- Thus the first step is the creation of a suitable database containing at least 1000 relevant genomes
- They are chosen by information from 16S-rRNA-gene-based surveys

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ०००●०००	Summary
Methods & Project Stat	u s		
Reference D	atabase		

- Metagenomic methods will be applied to samples taken from human individuals
- These rely on reference data
- Thus the first step is the creation of a suitable database containing at least 1000 relevant genomes
- They are chosen by information from 16S-rRNA-gene-based surveys
- For each of the selected organisms DNA has to be acquired
- Many of the microorganisms can **not** be cultured

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ०००●०००	Summary
Methods & Project Stat	u s		
Reference D	atabase		

- Metagenomic methods will be applied to samples taken from human individuals
- These rely on reference data
- Thus the first step is the creation of a suitable database containing at least 1000 relevant genomes
- They are chosen by information from 16S-rRNA-gene-based surveys
- For each of the selected organisms DNA has to be acquired
- Many of the microorganisms can **not** be cultured
- ⇒ Immense community effort

Applications overview 00000000 Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Methods & Project Status

Fields of Interest

• Five representative habitats were chosen for analysis

- Nasal
- Oral
- Skin
- Gastrointestinal
- Urogenital
- Samples from each will be analyzed once the reference data is complete

Source: http://www.hmpdacc-

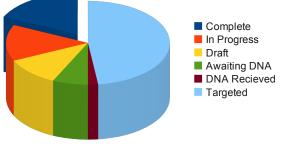
resources.org

Applications overview Complete Neanderthal Mitochondrial Genome Human Microbiome Project Summary

- The project will generate huge amounts of data
- Fast and easy methods to manage and access them have been and will be explored

28 / 34

Applications overview


Complete Neanderthal Mitochondrial Genome 00000000 Human Microbiome Project Summary

Methods & Project Status

Metagenomics Relevance

- The project will generate huge amounts of data
- Fast and easy methods to manage and access them have been and will be explored
- Reads from whole-genome shotgun sequencing will be sorted by species or at least taxonomical groups
- Building and handling phylogenetic trees containing millions of sequences will have be optimized

Applications overview	Complete Neanderthal Mitochondrial Genome 00000000	Human Microbiome Project ○○○○○○●	Summary
Methods & Project Stat	tus		
Current Stat	tus		

Source: http://www.hmpdacc-resources.org

- 18% of the reference genomes completed
- The remaining ones in different states of preparation or precessing

Overview

- 1 Applications overview
 - Bioprospecting
 - Phylogenetic Analysis
 - Functional Analysis
- 2 Complete Neanderthal Mitochondrial Genome
 - Introduction
 - Preparations & Procedures
- 3 Human Microbiome Project
 - Introduction
 - Methods & Project Status

What You Should Take Home

- The number of **possible applications** for metagenomics is immense
- The spectrum reaches from narrowing down on one specific genome to looking at a vast number of organisms at once
- Due to fast growing projects with increasing needs for efficient methods the field of metagenomics will keep growing fast
- You definitely have not heard the last of applied metagenomics and metagenomics in general

Thank you very much for your attention.

Questions? Remarks?

References |

Blow, N. (2008).

Metagenomics: exploring unseen communities. Nature, 453(7195):687.

Green, R., Malaspinas, A., Krause, J., Briggs, A., Johnson, P., Uhler, C., Meyer, M., Good, J., Maricic, T., Stenzel, U., et al. (2008).

A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. *Cell*, 134(3):416-426.

Huson, D., Auch, A., Qi, J., and Schuster, S. (2007).

MEGAN analysis of metagenomic data. Genome research, 17(3):377.

LeCleir, G., Buchan, A., and Hollibaugh, J. (2004).

Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions.

Applied and environmental microbiology, 70(12):6977.

Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E., Kubal, M., Paczian, T., Rodriguez,

A., Stevens, R., Wilke, A., et al. (2008).

The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes.

BMC bioinformatics, 9(1):386.

Subtractive hybridization magnetic bead capture: A new technique for the recovery of full-length ORFs from the metagenome.

Biotechnology Journal, 2(1):36.

References II

Morimoto, S. and Fujii, T. (2009).

A new approach to retrieve full lengths of functional genes from soil by ${\sf PCR}\mbox{-}{\sf DGGE}$ and metagenome walking.

Applied Microbiology and Biotechnology, 83(2):389-396.

Pathak, G., Ehrenreich, A., Losi, A., Streit, W., and G

"artner, W. (2009). Novel blue light-sensitive proteins from a metagenomic approach. Environmental Microbiology, 11(9):2388-2399.

Richter, D., Ott, F., Auch, A., Schmid, R., and Huson, D. (2008).

Metasim—a sequencing simulator for genomics and metagenomics. *PLoS One*, 3(10).

Simon, C. and Daniel, R. (2009).

Achievements and new knowledge unraveled by metagenomic approaches. Applied Microbiology and Biotechnology, pages 1–12.

Turnbaugh, P., Ley, R., Hamady, M., Fraser-Liggett, C., Knight, R., and Gordon, J. (2007). The human microbiome project.

Nature, 449(7164):804-810.

Von Mering, C., Hugenholtz, P., Raes, J., Tringe, S., Doerks, T., Jensen, L., Ward, N., and Bork, P. (2007).

Quantitative phylogenetic assessment of microbial communities in diverse environments. *Science*, 315(5815):1126.