Gene Ontology

Till Helge Helwig

Praktikum "Bioinformatics Software Tools"

March 30 - April 10, 2009

- Problems with biological databases
- The answer to the problems

2 Database structure

- General decisions and techniques
- The three domains

3 Tools

- General information
- A small selection of tools

Why Gene Ontology?

Example (Development of new antibiotic)

"Let's find all gene products involved in bacterial protein synthesis, that differ from their equivalents in human cells."

Why Gene Ontology?

Example (Development of new antibiotic)

"Let's find all gene products involved in bacterial protein synthesis, that differ from their equivalents in human cells."

Problems:

- Many relevant entries in many different databases
- Each database has its **own terminology** for "bacterial protein synthesis"

Why Gene Ontology?

Example (Development of new antibiotic)

"Let's find all gene products involved in bacterial protein synthesis, that differ from their equivalents in human cells."

Problems:

- Many relevant entries in many different databases
- Each database has its **own terminology** for "bacterial protein synthesis"
- \Rightarrow No way to perform an **automated search**

Why Gene Ontology?

Example (Development of new antibiotic)

"Let's find all gene products involved in bacterial protein synthesis, that differ from their equivalents in human cells."

Problems:

- Many relevant entries in many different databases
- Each database has its **own terminology** for "bacterial protein synthesis"
- \Rightarrow No way to perform an **automated search**
- ⇒ Unification of terms needed to allow simultaneous searches on many databases
- \Rightarrow Ontologies

Introduction 0●0 Database structure 0000000

Problems with biological databases

Why Gene Ontology? (2)

• Genetical knowledge spread over lots of different projects

Why Gene Ontology? (2)

- Genetical knowledge **spread** over lots of different projects
- There are genes and proteins shared by most or even all living cells
- Knowing a protein's function in one organism helps to understand its function in other organisms

Why Gene Ontology? (2)

- Genetical knowledge **spread** over lots of different projects
- There are genes and proteins shared by most or even all living cells
- Knowing a protein's function in one organism helps to understand its function in other organisms
- Interoperability of databases should be ensured to enable automatic transfer of annotations
- Search queries covering **several** databases while applying **filters** concerning i.e. a biological function needed

The answer to the problems

What is Gene Ontology?

- Founded in 1998 as collaboration of:
 - Flybase
 - Saccharomyces Genome Database
 - Mouse Genome Database
- Tries to build a **set of ontologies** providing unified terminologies for a set of domains

The answer to the problems

What is Gene Ontology?

- Founded in 1998 as collaboration of:
 - Flybase
 - Saccharomyces Genome Database
 - Mouse Genome Database
- Tries to build a **set of ontologies** providing unified terminologies for a set of domains
- Since its foundation **13 projects** joined the consortium and another **4 are contributing associates**

The answer to the problems

What is Gene Ontology?

- Founded in 1998 as collaboration of:
 - Flybase
 - Saccharomyces Genome Database
 - Mouse Genome Database
- Tries to build a **set of ontologies** providing unified terminologies for a set of domains
- Since its foundation **13 projects** joined the consortium and another **4 are contributing associates**
- On March 25th, 2009 GO contained 27009 terms

Three domains

 GO covers three different domains to describe gene products:

- Cellular component
- 2 Molecular function
- Biological process

Three domains

 GO covers three different domains to describe gene products:

- Cellular component
- 2 Molecular function
- Biological process
- Every gene product can be annotated with one or more terms from each of these ontologies
- Not meant to provide a complete cover of biology, but consensus terminologies used by all participating projects

How does GO work?

- Ontologies built as directed acyclic graphs
- Terms can have more than one parent

How does GO work?

- Ontologies built as directed acyclic graphs
- Terms can have more than one parent
- Between terms relationships are established, i.e.:

is a: class-subclass relation ("nucleus" is a "cell part")

How does GO work?

- Ontologies built as directed acyclic graphs
- Terms can have more than one parent
- Between terms relationships are established, i.e.:

is a: class-subclass relation ("nucleus" is a "cell part") part of: whenever the former is present, the latter is too, but not necessarily in reverse ("cell part" part of "cell")

How does GO work?

- Ontologies built as directed acyclic graphs
- Terms can have more than one parent
- Between terms relationships are established, i.e.:

is a: class-subclass relation ("nucleus" is a "cell part") part of: whenever the former is present, the latter is too, but not necessarily in reverse ("cell part" part of "cell") regulates: in a biological process the former has an influence on the latter ("translational frameshifting" regulates "translation")

How does GO work?

- Ontologies built as directed acyclic graphs
- Terms can have more than one parent
- Between terms relationships are established, i.e.:

is a: class-subclass relation

("nucleus" is a "cell part")

part of: whenever the former is present, the latter is too, but not necessarily in reverse

("cell part" part of "cell")

regulates: in a biological process the former has an influence on the latter

("translational frameshifting" regulates
"translation")

• There are transitive relations between these relationships

Screenshot: Term "translation"

translation

	Term information 🖡 Term lineage 🖡 External references 🖡 6399 gene product associations 🌩				
Term Information					
Accession	GO:0006412				
Ontology	biological process				
Synonyms	exact: protein anabolism exact: protein biosynthesis exact: protein synthesis exact: protein synthesis exact: protein translation alt_id: G0:0006416 alt_id: G0:006453 alt_id: G0:0064337				
Definition	The chemical reactions and pathways resulting in the formation of a protein. This is a ribosome-mediated process in which the information in messenger RNA (mRNA) is used to specify the sequence of amino acids in the protein. [source: GOC:go_curators]				
Comment	None				
Subset	goslim_generic goslim_pir goslim_plant goslim_yeast				
	Back to top				

Screenshot: Term "translation"

Term Lineage					
Switch to viewing term ancestors					
▼ Filter tree view ℓ Filter Gene Product Counts Data source All CGD Analissma phagocy dictyBase Bacillus anthraci					
GO:0034961 : cellular biopolymer biosynthetic process [19483 gene products] Actions GO:003692 : cellular polysaccharide biosynthetic process [779 gene products] GO:006260 : DNA replication [1817 gene products] GO:0006260 : poly-gamma-glutamate biosynthetic process [0 gene products] GO:0006350 : transcription [10789 gene products] GO:0006412 : translation [6399 gene products] GO:0006412 : translation [6399 gene products]	i: Reset View ie browser				
Image: Construction of the second	5				
 G0:0006413 : translational initiation [455 gene products] G0:0006415 : translational termination [93 gene products] G0:0006418 : tRNA aminoacylation for protein translation [810 gene products] G0:0006414 : translational elongation [1654 gene products] G0:0044267 : cellular protein metabolic process [17264 gene products] 					

GO: Cellular component

- Describes **locations** on the level of subcellular structures and macromolecular complexes
- Multicellular (or anatomical) locations and individual proteins are **not included**
- Root node: cell (GO:0005623)
- Locations are clearly seperated into classes like "Intracellular" or "Plasma membrane"

GO: Cellular component

- Describes locations on the level of subcellular structures and macromolecular complexes
- Multicellular (or anatomical) locations and individual proteins are **not included**
- Root node: cell (GO:0005623)
- Locations are clearly seperated into classes like "Intracellular" or "Plasma membrane"

Example

```
sarcoplasmic reticulum
```

- [p] sarcoplasmic reticulum membrane
- ---[i] free sarcoplasmic reticulum membrane
- ---[i] junctional sarcoplasmic reticulum membrane
- [p] sarcoplasmic reticulum lumen

GO: Molecular function

- Covers abilities a gene product has, i.e. transport or binding
- Are often named "activity" to clearly seperate them from the gene product itself
- There are **no terms** describing more than one function at the same time

GO: Molecular function

- Covers abilities a gene product has, i.e. transport or binding
- Are often named "activity" to clearly seperate them from the gene product itself
- There are no terms describing more than one function at the same time

Example

```
regulation of transcription
[i] regulation of transcription factor activity
---[i] positive reg. of transcription factor activity
---[i] negative reg. of transcription factor activity
[i] regulation of transcription, start site selection
```

GO: Biological process

- Contains terms that describe series of events or molecular functions
- Terms describe processes or represent a collection of processes
- Processes might be summarized in a single "development node" to prevent a proliferation
- Some processes (i.e. the cell cycle) are split into molecular events and temporal stages

GO: Biological process

- Contains terms that describe series of events or molecular functions
- Terms describe processes or represent a collection of processes
- Processes might be summarized in a single "development node" to prevent a proliferation
- Some processes (i.e. the cell cycle) are split into molecular events and temporal stages

Example

```
cell cycle
[p] cell cycle process
---[i] cell cycle phase
-----[i] anaphase
----[i] centromere seperation
```

Standard definitions

- For all three ontologies there are defined standards
- They set rules for:
 - the choice of term names
 - the creation of **new subclasses**
 - tests to ensure consistency and correctness
 - **ontology specific things** like terms for start and end of a process
- These standards are especially relevant if you want to **contribute** to GO

General information

Working with GO

- There is a **huge amount of tools** (over 100) that either use GO or can be used to work with GO
- Only **two official tools** are maintained by the GO consortium
- The remaining ones were created by the community for many different tasks

General information

Working with GO

- There is a **huge amount of tools** (over 100) that either use GO or can be used to work with GO
- Only **two official tools** are maintained by the GO consortium
- The remaining ones were created by the community for many different tasks
- On the GO homepage there is a complete list available: http://www.geneontology.org/GO.tools.shtml
- \Rightarrow I will only provide a very short overview

Official tools

AmiGO

- Web-based **browsing and searching** tool to access the GO database
- Searches GO for terms or gene products
- Shows the **position** of terms in the ontology (parents, siblings)
- Gene products are shown with their GO term **annotations**

Official tools

AmiGO

- Web-based **browsing and searching** tool to access the GO database
- Searches GO for terms or gene products
- Shows the **position** of terms in the ontology (parents, siblings)
- Gene products are shown with their GO term **annotations**

OBO-Edit

- Graph-based tool to view and edit OBO format ontologies
- Easy user interface focussing on the display of the ontology structure

Unofficial tools

Tasks performed by these tools:

• Searching and browsing GO e.g. DynGO, GoFish, QuickGO, GenNav, PANDORA, ...

Unofficial tools

Tasks performed by these tools:

- Searching and browsing GO e.g. DynGO, GoFish, QuickGO, GenNav, PANDORA, ...
- Annotation of data sets e.g. Blast2GO, GOanna, GOtcha, Manatee, ...

Unofficial tools

Tasks performed by these tools:

- Searching and browsing GO e.g. DynGO, GoFish, QuickGO, GenNav, PANDORA, ...
- Annotation of data sets e.g. Blast2GO, GOanna, GOtcha, Manatee,
- Analyzation of data sets
 e.g. BiNGO, EasyGO, FatiGO, GOArray, MultiGO, ...

Unofficial tools

Tasks performed by these tools:

- Searching and browsing GO e.g. DynGO, GoFish, QuickGO, GenNav, PANDORA, ...
- Annotation of data sets e.g. Blast2GO, GOanna, GOtcha, Manatee, ...
- Analyzation of data sets
 e.g. BiNGO, EasyGO, FatiGO, GOArray, MultiGO, ...
- Analysis of the GO database itself and other things e.g. CateGOrizer, FunSpec, GOChase, WEGO, Whatizit, ...

Introd		

The last slide

Thank you for listening.

References

M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, et al.

Gene Ontology: tool for the unification of biology. *Nature Genetics*, 25:25–29, 2000.

Gene Ontology Consortium.

Homepage: www.genetontology.org.