Computational Analysis of Methylome Sequencing Data Master Thesis Bioinformatics

Till Helge Helwig

Eberhard-Karls-University Tübingen Wilhelm-Schickard-Institut für Informatik & Max Planck Institute for Developmental Biology

February 22, 2011

Outline

The Topic

- What is a Methylome?
- Why is the Methylome Interesting?
- 2 The Problem
 - Obtaining the Methylome via Sequencing
 - Problems with the Common Approach

3 The Idea

- How Can Computer Science Help?
- Evaluated Methods

4 The Results

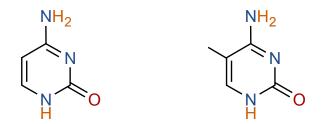
- Performance Comparison
- What Do the Results Imply?

Outline

The Topic

- What is a Methylome?
- Why is the Methylome Interesting?
- 2 The Problem
 - Obtaining the Methylome via Sequencing
 - Problems with the Common Approach

3 The Idea


- How Can Computer Science Help?
- Evaluated Methods

4 The Results

- Performance Comparison
- What Do the Results Imply?

The Topic ●oo	The Problem 000	The Idea 0000	The Results
What is a Methylome?			
The Methyl	ome		

- Entirety of **methylated nucleotides** (e.g. cytosines) in the *DNA*
- Addition of a methyl group converts cytosine into 5-methylcytosine

The Topic ●oo	The Problem 000	The Idea 0000	The Results
What is a Methylome?			
The Methyl	ome		

- Entirety of **methylated nucleotides** (e.g. cytosines) in the *DNA*
- Addition of a methyl group converts cytosine into 5-methylcytosine

The Topic o●o	The Problem 000	The Idea 0000	The Results 00000
What is a Methylome?			
Properties of	f the Methylom	e	

• Additional layer of information within the DNA

The Topic o●o	The Problem 000	The Idea 0000	The Results 00000
What is a Methylome?			
Properties of t	the Methylome		

- Additional layer of information within the DNA
- Methylations are created by methyltransferases

The Topic ○●○		The Problen	The Idea 0000	The Results 00000
What is a Methy	/lome?			
_				

- Additional layer of information within the DNA
- Methylations are created by methyltransferases
- Maintenance of methylations after transcription

The Topic o●o	The Problem 000	The Idea 0000	The Results
What is a Methylome?			

- Additional layer of information within the DNA
- Methylations are created by methyltransferases
- Maintenance of methylations after transcription

• Environmental factors influence the methylome

The Topic o●○	The Problem 000	The Idea 0000	The Results
What is a Methylome?			

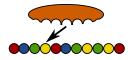
- Additional layer of information within the DNA
- Methylations are created by methyltransferases
- Maintenance of methylations after transcription

- Environmental factors influence the methylome
- The methylome is highly variable...
 - ...between different species

The Topic	The Problem	The Idea	The Results
o●o	000	0000	00000
What is a Methylome?			

- Additional layer of information within the DNA
- Methylations are created by methyltransferases
- Maintenance of methylations after transcription

- Environmental factors influence the methylome
- The methylome is highly variable...
 - ...between different species
 - ...between organisms of the same species


The Topic o●○	The Problem 000	The Idea 0000	The Results
What is a Methylome?			

- Additional layer of information within the DNA
- Methylations are created by methyltransferases
- Maintenance of methylations after transcription

- Environmental factors influence the methylome
- The methylome is highly variable...
 - ...between different species
 - ...between organisms of the same species
 - ...between different cell types of the same organism

The Topic ○○●	The Problem 000	The Idea 0000	The Results
Why is the Methylome Interesting	J?		
Transcription I	nhibition		

• Methylated nucleotides can inhibit the transcription

The Topic ○○●	The Problem 000	The Idea 0000	The Results
Why is the Methylome Inte	eresting?		
Transcriptic	on Inhibition		

• Methylated nucleotides can inhibit the transcription

- Relevance for different research fields:
 - Developmental biology (e.g. for association studies)
 - Medicine (e.g. for tumorgenesis)
 - **Ecology** (e.g. documentation of environmental changes)
 - ...

Outline

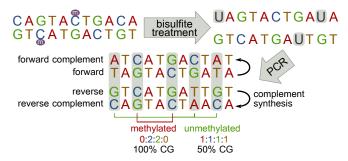
The Topic

- What is a Methylome?
- Why is the Methylome Interesting?
- 2 The Problem
 - Obtaining the Methylome via Sequencing
 - Problems with the Common Approach

3) The Idea

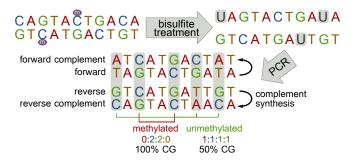
- How Can Computer Science Help?
- Evaluated Methods

4 The Results


- Performance Comparison
- What Do the Results Imply?

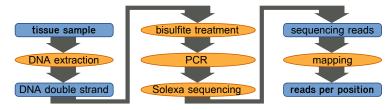
The Topic 000	The Problem ●00	The Idea 0000	The Results
Obtaining the Methylom	e via Sequencing		
Making th	e Methylome V	isible	

• Standard sequencing can not identify methylations

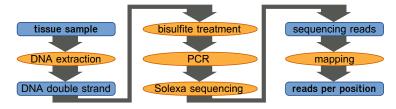

The Topic 000	The Problem ●००	The Idea 0000	The Results		
Obtaining the Methylome via Sec	quencing				
Making the Methylome Visible					

- Standard sequencing can not identify methylations
- **Bisulfite treatment** makes methylations visible:

The Topic 000	The Problem ●○○	The Idea 0000	The Results
Obtaining the Methylome via Sec	quencing		
Making the M	ethylome Visib	le	


- Standard sequencing can not identify methylations
- **Bisulfite treatment** makes methylations visible:

• Sequencing now reports only methylated cytosines


The Topic 000	The Problem o●o	The Idea 0000	The Results		
Obtaining the Methylome via Sequencing					
Sequencing Protocol					

 Bisulfite treatment inserted into the sequencing protocol

The Topic 000	The Problem ○●○	The Idea 0000	The Results		
Obtaining the Methylome via Sequencing					
Sequencing P	rotocol				

 Bisulfite treatment inserted into the sequencing protocol

 Methylation rates calculated from the read counts per position

The Topic	The Problem	The Idea	The Results
	000		

Methylome Sequencing is Imprecise

Bisulfite treatment

Has a significant conversion error rate.

 \Rightarrow Can be estimated from the mitochondrium DNA.

The Topic	The Problem	The Idea	The Results
	000		

Methylome Sequencing is Imprecise

Bisulfite treatment

Has a significant conversion error rate.

 \Rightarrow Can be estimated from the mitochondrium DNA.

PCR

Might contain a preference for certain strands. ⇒ Difficult to take into account.

The Topic	The Problem	The Idea	The Results
	000		

Methylome Sequencing is Imprecise

Bisulfite treatment

Has a significant conversion error rate.

 \Rightarrow Can be estimated from the mitochondrium DNA.

PCR

Might contain a preference for certain strands. ⇒ Difficult to take into account.

Sequencing

Reports wrong nucleotides sometimes.

 \Rightarrow Accuracy value is reported as well.

The Topic	The Problem	The Idea	The Results
	000		

Methylome Sequencing is Imprecise

Bisulfite treatment

Has a significant conversion error rate.

 \Rightarrow Can be estimated from the mitochondrium DNA.

PCR

Might contain a preference for certain strands. ⇒ Difficult to take into account.

Sequencing

Reports wrong nucleotides sometimes.

 \Rightarrow Accuracy value is reported as well.

Mapping

Problematic due to repetetive regions and reduced sequence complexity.

Outline

The Topic

- What is a Methylome?
- Why is the Methylome Interesting?
- 2 The Problem
 - Obtaining the Methylome via Sequencing
 - Problems with the Common Approach

3 The Idea

- How Can Computer Science Help?
- Evaluated Methods

4 The Results

- Performance Comparison
- What Do the Results Imply?

The Topic	The Problem	The Idea	The Results
		0000	
How Can Computer S	cience Help?		

Improvement via Machine Learning

• Methyltransferases need some form of binding sites

The Topic	The Problem	The Idea	The Results
000	000	●000	00000

Improvement via Machine Learning

- Methyltransferases need some form of **binding sites**
- Binding sites are patterns in the DNA nucleotide sequence

The Topic	The Problem	The Idea	The Results
000	000	●000	00000

How Can Computer Science Help?

Improvement via Machine Learning

- Methyltransferases need some form of binding sites
- Binding sites are patterns in the DNA nucleotide sequence
- Patterns can be learned in order to be recognized in new data

The Topic	The Problem	The Idea	The Results
000	000	●000	00000

How Can Computer Science Help?

Improvement via Machine Learning

- Methyltransferases need some form of binding sites
- Binding sites are patterns in the DNA nucleotide sequence
- Patterns can be learned in order to be recognized in new data

Idea

Use machine learning to obtain an additional **confidence measure** based on sequence patterns.

The Topic 000	The Problem 000	The Idea ○●○○	The Results	
How Can Computer Science Help?				
Requirements				

• Needs to handle full genomes

The Topic 000	The Problem 000	The Idea ○●○○	The Results
How Can Computer Scienc	e Help?		
Requiremer	nts		

- Needs to handle full genomes
- Will be used on **newly sequenced** genomes
- \Rightarrow Should not rely on more than the **nucleotide** sequence

The Topic 000	The Problem 000	The Idea ○●○○	The Results
How Can Computer Science	Help?		
Requiremen	ts		

- Needs to handle full genomes
- Will be used on **newly sequenced** genomes
- ⇒ Should not rely on more than the nucleotide sequence
 - Quantification of the likelihood for candidate nucleotides to be methylated
- \Rightarrow **Confidence score** between 0.0 and 1.0

The Topic	The Problem	The Idea	The Results
000	000	००●०	00000
Evaluated Methods			

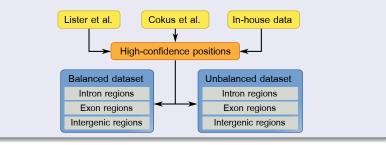
Dataset for Training and Test

Problem

No dataset available with confirmed methylations.

The Topic	The Problem	The Idea	The Results
ooo	000	००●०	00000

Evaluated Methods


Dataset for Training and Test

Problem

No dataset available with confirmed methylations.

Solution

Manual creation of a high-confidence dataset

Computational Analysis of Methylome Sequencing Data

The Topic 000	The Problem 000	The Idea ०००●	The Results
Evaluated Methods			
Experimental	Setup		

Support Vector Machines

The Topic 000	The Problem 000	The Idea ○○○●	The Results
Evaluated Methods			
Experimer	ntal Setup		

Support Vector Machines

• 3 different kernels:

The Topic 000	The Problem 000	The Idea ०००●	The Results 00000
Evaluated Methods			
Experimer	ntal Setup		

- 3 different kernels:
 - k-Spectrum Kernel

(considers substring occurences in the input strings)

The Topic 000	The Problem 000	The Idea ०००●	The Results
Evaluated Methods			
Experimer	ntal Setup		

- 3 different kernels:
 - *k*-**Spectrum Kernel** (considers substring occurences in the input strings)
 - Extension of the *k*-Spectrum Kernel (considers additionally the position of the substrings)

The Topic 000	The Problem 000	The Idea ०००●	The Results
Evaluated Methods			
Experimen	ntal Setup		

- 3 different **kernels**:
 - *k*-**Spectrum Kernel** (considers substring occurences in the input strings)
 - Extension of the *k*-Spectrum Kernel (considers additionally the position of the substrings)
 - Weighted Degree String Kernel with shifts (adds weights to account for substring shifts, substring lengths and substring positions)

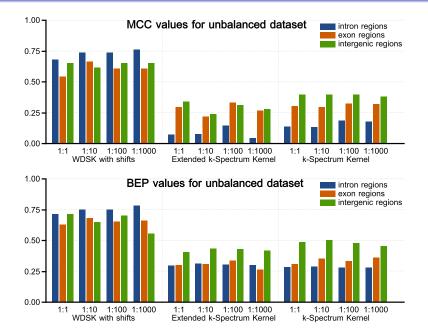
The Topic 000	The Problem 000	The Idea ०००●	The Results
Evaluated Methods			
Experimen	ntal Setup		

- 3 different **kernels**:
 - *k*-**Spectrum Kernel** (considers substring occurences in the input strings)
 - Extension of the *k*-Spectrum Kernel (considers additionally the position of the substrings)
 - Weighted Degree String Kernel with shifts (adds weights to account for substring shifts, substring lengths and substring positions)
- Prediction of methylations on whole genome with best classifiers

Outline

The Topic

- What is a Methylome?
- Why is the Methylome Interesting?
- 2 The Problem
 - Obtaining the Methylome via Sequencing
 - Problems with the Common Approach


3 The Idea

- How Can Computer Science Help?
- Evaluated Methods

4 The Results

- Performance Comparison
- What Do the Results Imply?

Performances on Unbalanced Dataset

The Topic	The Problem	The Idea	The Results
			00000

Obtaining the Confidence Value

• The three best classifiers (WDSK with shifts) used to predict for whole genome

The Topic	The Problem	The Idea	The Results
			0000

- The three best classifiers (WDSK with shifts) used to predict for whole genome
- **Balanced classifiers** performed badly (59% methylation rate)

The Topic	The Problem	The Idea	The Results
			0000

- The **three best classifiers** (WDSK with shifts) used to predict for whole genome
- **Balanced classifiers** performed badly (59% methylation rate)
- **Unbalanced classifiers** report 6% methylation rate (7% expected)

The Topic	The Problem	The Idea	The Results
			0000

- The **three best classifiers** (WDSK with shifts) used to predict for whole genome
- **Balanced classifiers** performed badly (59% methylation rate)
- **Unbalanced classifiers** report 6% methylation rate (7% expected)
- SVM calculates a confidence value

The Topic	The Problem	The Idea	The Results
			00000

- The **three best classifiers** (WDSK with shifts) used to predict for whole genome
- **Balanced classifiers** performed badly (59% methylation rate)
- **Unbalanced classifiers** report 6% methylation rate (7% expected)
- SVM calculates a confidence value
- However: Few reported methylated positions occur in original datasets

The Topic 000	The Problem 000	The Idea 0000	The Results ○○●○○	
What Do the Results Imply?				
What Did	We Learn?			

Biology

 Methylation state to some degree reflected by the neighboring nucleotides

The Topic 000	The Problem 000	The Idea 0000	The Results
What Do the Results Imp	oly?		
What Did	M = 1 = 0		

Biology

- Methylation state to some degree reflected by the neighboring nucleotides
- No unique patterns identifying methylated positions

The Topic 000	The Problem 000	The Idea 0000	The Results ○○●○○
What Do the Results Im	nply?		
What Did	We Learn?		

Biology

- Methylation state to some degree reflected by the neighboring nucleotides
- No unique patterns identifying methylated positions
- Different properties of methylated positions in varying genomic regions

The Topic 000	The Problem 000	The Idea 0000	The Results ○○●○○
What Do the Results Imply	?		

What Did We Learn?

Biology

- Methylation state to some degree reflected by the neighboring nucleotides
- No unique patterns identifying methylated positions
- Different properties of methylated positions in varying genomic regions

Bioinformatics

 Application of supervised learning methods requires more reliable datasets

The Topic 000	The Problem 000	The Idea 0000	The Results
What Do the Results Imply	?		

What Did We Learn?

Biology

- Methylation state to some degree reflected by the neighboring nucleotides
- No unique patterns identifying methylated positions
- Different properties of methylated positions in varying genomic regions

Bioinformatics

- Application of supervised learning methods requires more reliable datasets
- **Unbalanced data** is more realistic but leads to additional complexity

The Topic 000	The Problem 000	The Idea 0000	The Results ○○○●○
What Do the Results Imply?			
A Look Into th	e Crystal Ball		

• Research toward validation of methylome datasets

The Topic 000	The Problem 000	The Idea 0000	The Results ○○○●○
What Do the Results Imp	ly?		
A Look Int	o the Crystal Ba		

- Research toward validation of methylome datasets
- More extensive study using more parameter values and more complex features

The Topic 000	The Problem 000	The Idea 0000	The Results ○○○●○
What Do the Results Imply?			
A Look Into 1	he Crystal Bal		

- Research toward validation of methylome datasets
- More extensive study using more parameter values and more complex features
- **Relaxation** of confidence threshold in example selection

The Topic	The Problem	The Idea	The Results
000	000	0000	○○○●○
What Do the Results Imply?			

A Look Into the Crystal Ball

- Research toward validation of methylome datasets
- More extensive study using more parameter values and more complex features
- **Relaxation** of confidence threshold in example selection
- Thorough analysis of methylome variability between species, organisms and cell types

The Topic	The Problem	The Idea	The Results
000	000	0000	○○○●○
What Do the Results Imply?			

A Look Into the Crystal Ball

- Research toward validation of methylome datasets
- More extensive study using more parameter values and more complex features
- **Relaxation** of confidence threshold in example selection
- Thorough analysis of methylome variability between species, organisms and cell types
- Unsupervised learning methods

The Topic	The Problem	The Idea	The Results
ooo	000	0000	○○○●○
What Do the Results Imply?			

A Look Into the Crystal Ball

- Research toward validation of methylome datasets
- More extensive study using more parameter values and more complex features
- **Relaxation** of confidence threshold in example selection
- Thorough analysis of methylome variability between species, organisms and cell types
- Unsupervised learning methods
- Recent research promises methylome data as byproduct of standard sequencing

Thank you for your attention!

Acknowledgements		
Prof. Dr. Daniel Huson	MLCB group	
Prof. Dr. Detlef Weigel	WeigelWorld	
• Dr. Karsten Borgwardt	Jörg Hagmann	

Most important sources:

S. J. Cokus, S. Feng, and S. E. Jacobsen.

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. *Nature*, 452(7184):215–219, 2008.

R. Lister, R. C. O'Malley, and J. R. Ecker.

Highly integrated single-base resolution maps of the epigenome in Arabidopsis. *Cell*, 133(3):523–536, 2008.

G. Rätsch, S. Sonnenburg, and B. Schölkopf.

RASE: recognition of alternatively spliced exons in C. elegans. *Bioinformatics*, 21(suppl 1):1369, 2005.

K. Schneeberger, J. Hagmann, and D. Weigel.

Simultaneous alignment of short reads against multiple genomes. *Genome Biology*, 10:R98, 2009.

B. Schölkopf and A. J. Smola.

Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, 2002.