Till Helge Helwig

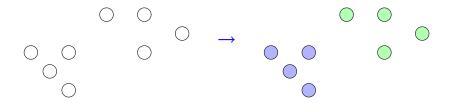
Eberhard-Karls-University Tübingen

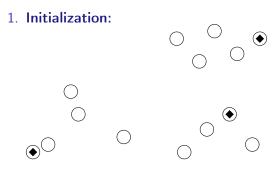
Lecture "Data Mining in Bioinformatics"

March 12th, 2010

Recapitulation	Soft Clustering	Research	Conclusion
Overview			

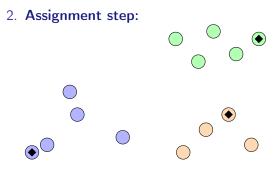
Recapitulation	Soft Clustering	Research	Conclusion
Overview			




Recapitulation	Soft Clustering	Research	Conclusion
Clustering			

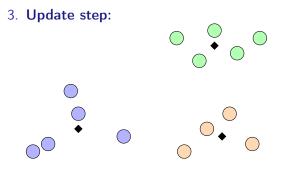
- Discovery of classes in a set of objects
- Unsupervised learning

K-Means Clustering in a Nutshell


- Build k clusters
- Minimize intra-cluster variance

Pick k random points as means

Research


K-Means Clustering in a Nutshell (2)

Assign each point to the nearest mean

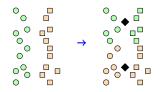
Research

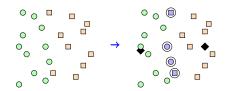
K-Means Clustering in a Nutshell (3)

Recalculate means from corresponding points

4. Go to step 2. if at least for one point the cluster was changed

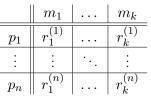
Recapitulation	Soft Clustering	Research	Conclusion
Overview			





- Sometimes classes **can not** be defined by the least distance to a central point
- Examples:

• Elongated clusters often are not detected correctly


• Points on the border between two means should not be assigned to one cluster

Taking Care of Uncertainty

- Points can belong to more than one cluster
- Clustering should reflect the **degree of association** between points and means
- Replace hard (absolute) decisions in algorithms with soft (relative) ones
- The final clustering allows interpretation of uncertain points

• New representation of associations as responsibility matrix:

• $r_c^{(i)}$ describes the **responsibility** of cluster c for point i:

$$r_{c}^{(p)} = \frac{\exp\left(-\beta d\left(m_{c}, p_{i}\right)\right)}{\sum_{k'} \exp\left(-\beta d\left(m_{k'}, p_{i}\right)\right)}$$

 \Rightarrow New parameter β , which describes the "stiffness" of the clustering

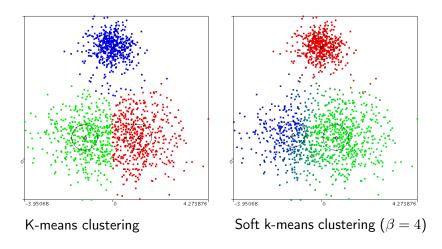
Soft K-Means Clustering (2)

• New update step:

Refine all clusters c via:

$$m_c = \frac{\sum_{i=1}^n r_c^{(i)} p_i}{\sum_{i=1}^n r_c^{(i)}} = \frac{\text{Weighted points sum}}{\text{Total responsibility}}$$

• New association step:


Update the responsibility matrix

Recapitulation	Soft Clustering	Research	Conclusion
C			

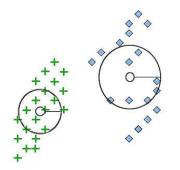
Stiffness

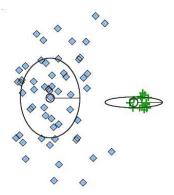
- $\bullet\,$ The stiffness β influences the difference to the hard k-means clustering
- Soft k-means clustering with $\beta \to \infty$ would yield the same result as hard k-means clustering
- Figuring out the right value for β is non-trivial even with "try and error"

Example

- In general soft clustering can reduce information loss due to discarding all clusters except one
- Document clustering e.g. for web search engines:
 - \Rightarrow Soft clustering allows for documents to occur in several topics
- Analysis of gene expression data (microarray experiments):
 - $\Rightarrow\,$ Soft clustering decreases the sensitivity towards noise
- Prediction of molecule functions from protein-protein-interaction networks
 - ⇒ Soft clustering can assign several relevant functions to a protein

Recapitulation	Soft Clustering	Research	Conclusion
Overview			





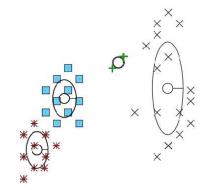
Further Improvements of Soft K-Means Clustering

- $\bullet\,$ Choice of $\beta\,$ decides about usefulness of the results
 - Modification using Gaussian maximum likelihood function
 - Assumption: Each cluster is **Gaussian sphere** with its own width
 - During the update step the algorithm recalculates β itself
 - \Rightarrow Clusters with **different sizes** can be detected
- Similar enhancement using axis-aligned Gaussians is possible
 - \Rightarrow Clusters with elongated shapes can be detected

Examples

Source: MacKay, 2003

Recapitulation	Soft Clustering	Research	Conclusion
Overview			



The Last Slide

- Soft decisions can improve the chances for finding clusters with special shapes
- This can go terribly wrong and make the results worse
- Association of points to clusters is the crucial step in k-means clustering
- ⇒ Many more improvements and modifications possible
 - Applications for soft clustering are innumerable

Source: MacKay, 2003

Thank you for your attention.

Questions? Remarks?

References:

K. Borgwardt.

Data mining in bioinformatics. Lecture, March 2010.

D.J.C. MacKay.

Information theory, inference, and learning algorithms. Cambridge Univ Press, 2003.